

Welcome to Docker ARP Analysis Documentation!

I’ve been immersing myself in CI/CD pipeline studies lately, and now that I’ve gotten a good grasp of it, I can finally dedicate my full attention to understanding container technologies. To start, I decided to focus on networking, which is the stack I’m most familiar with.
In this simple how-to guide, I’ll walk you through observing the Address Resolution Protocol (ARP) in action within a Docker environment.
An Address Resolution Protocol(ARP) allows a container to learn the MAC address of another device (in this lab, it’s the bridge and other containers) dynamically.
Without an ARP, a ping between containers, external networks, or even a web request between containers and other devices fails.

Table of Contents:

	Requirements
	Install Homebrew and Multipass

	Download Multipass

	Download an Ubuntu Server from Multipass

	Go to the Shell of the Ubuntu Server

	Install Docker

	Mount a Local Folder to an Ubuntu Directory

	Install Wireshark

	Architecture Deployment Guide
	Enter into Ubuntu Shell

	Create a Custom Bridge

	Verify New Bridge

	Pull Alpine Image

	Open New Terminal Tabs and Capture Packets in Each Bridge

	Create 2 Containers in the Default Bridge, Also Connect Them to the Custom Bridge

	Send Pings to the Internet From the First Interface

	Send Pings to the Internet From the Second Interface

	View MAC Addresses of Each Bridge Interface

	View MAC Addresses of Each Container Interface

	End Packet Captures

	Move the Files to the Local Directory

	View Packet Captures
	Docker0 Bridge Interface

	Docker1 Bridge Interface

	Clean-Up
	Stop and Remove the Container

	Delete Custom Bridge

	Verify Network List

	Stop Ubuntu Server

	Conclusion

	Resources

Requirements

I recently made the switch to a Mac and found using Multipass [https://multipass.run/] from Canonical simpler than spinning up a VM with tools like Virtualbox. However, when it comes to container networking labs, non-Linux systems are not recommended. While I downloaded Docker Desktop for Mac, I had trouble seeing all the Docker network interfaces.
For Windows users, I will advise you to use WSL2 instead, it’s easier to deploy and manage compared to having to use a virtual machine like Virtualbox.
Keep in mind that the Ubuntu installation requirement is only for Mac and Linux users. This guide will use three terminal tabs throughout.

Install Homebrew and Multipass

Download Homebrew [https://brew.sh/]

Terminal-1 Mac/Linux
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

Download Multipass

Terminal-1 Mac/Linux
brew install multipass

Download an Ubuntu Server from Multipass

This Ubuntu server will be customized to run the same specifications as an AWS EC2-T2 Micro instance type.

	1 CPU

	1 GB of RAM

	8 GB of disk

	version 22.04

Simple and fast, right?

Terminal-1 Mac/Linux
multipass launch jammy --name=ubuntu --cpus=1 --disk=8G --memory=1G

jammy is the image name [https://multipass.run/docs/create-an-instance#heading--create-an-instance-with-a-specific-image] for Ubuntu server version 22.04.

Go to the Shell of the Ubuntu Server

Terminal-1 Mac/Linux
multipass shell ubuntu

Install Docker

Download docker [https://docs.docker.com/engine/install/ubuntu/] on the Ubuntu server.

Terminal-1 Ubuntu
sudo apt-get install docker-ce docker-ce-cli containerd.io docker-buildx-plugin docker-compose-plugin

Close this Ubuntu shell.
Sometimes you might need to use the exit command severally
to successfully exit the shell.
exit

Mount a Local Folder to an Ubuntu Directory

Mount the Documents/ folder in your Mac, or other machine to the mnt/ directory in the Ubuntu server running inside Multipass.

Terminal-1 Mac/Linux
multipass mount /Users/apple/Documents /mnt/
Verify Ubuntu Server Installation

apple@Charles-MBP ~ % multipass info ubuntu
Name: ubuntu
State: Running
Snapshots: 0
IPv4: 192.168.64.4
 172.17.0.1
Release: Ubuntu 22.04.3 LTS
Image hash: 9dxa2awl28c8 (Ubuntu 22.04 LTS)
CPU(s): 1
Load: 0.00 0.00 0.00
Disk usage: 2.3GiB out of 7.7GiB
Memory usage: 201.4MiB out of 951.6MiB
Mounts: /Users/apple/Documents => /mnt
 UID map: 501:default
 GID map: 20:default

Install Wireshark

Choose your preferred machine and download [https://www.wireshark.org/download.html].

Architecture Deployment Guide

I have a simple architecture that deploys two docker containers in two different subnets. In docker, you can attach one container to several subnets. This is achieved by a new interface being created and assigned to that subnet.

[image: ../_images/architecture.png]

Network Architecture Table

	Device Name

	Interface

	IP Address

	Subnet Mask

	Alpine1

	eth0/0

	172.17.0.2

	255.255.0.0

	Alpine1

	eth0/1

	172.17.0.4

	255.255.0.0

	Alpine2

	eth0/0

	172.18.0.3

	255.255.0.0

	Alpine2

	eth0/1

	172.18.0.5

	255.255.0.0

	Kernel/Ubuntu VM

	eth0/0

	192.168.64.4

	255.255.255.0

	Multipass

	eth0/1

	192.168.64.1

	255.255.255.0

	Bridge

	docker0

	172.17.0.1

	255.255.0.0

	Bridge

	veth0/0

	–

	–

	Bridge

	veth0/1

	–

	–

	Custom_Bridge

	docker1

	172.18.0.1

	255.255.0.0

	Custom_Bridge

	veth0/0

	–

	–

	Custom_Bridge

	veth0/1

	–

	–

Enter into Ubuntu Shell

Enter Into the Shell of the Ubuntu Server Again

Terminal-1 Mac/Linux
multipass shell ubuntu
Create a New Network

I noticed that in docker, you only specify a subnet and mask. This makes sense because if you are deploying this on AWS, a VPC will be defined already, all you need to do is create a new subnet mask for your containerized environment.

Create a Custom Bridge

Terminal-1 Ubuntu
docker network create \
-o com.docker.network.bridge.name=docker1 \
--subnet=172.18.0.0/24 \
--gateway=172.18.0.253 \
custom_bridge

Verify New Bridge

Terminal-1 Ubuntu

This is a simulated command and output
ubuntu@ubuntu:~$ docker network ls
NETWORK ID NAME DRIVER SCOPE
6e5ffkvms8c3 bridge bridge local
d3b0029faed7 custom_bridge bridge local <==
e9f55dsdf605 host host local
e9708nj5179a none null local

Pull Alpine Image

I love using Alpine Linux because it’s lightweight.

Terminal-1 Ubuntu
docker pull alpine
Open a New Terminal

Open New Terminal Tabs and Capture Packets in Each Bridge

docker0

Execute this command to open a new tab. ⌘ + T

Then enter the Ubuntu shell

Terminal-2 Mac
multipass shell ubuntu
Listen for ARP Packets in Each Bridge

Now that the Ubuntu shell has been initialized, execute the below command to capture all packets.

Terminal-2 Ubuntu
sudo tcpdump -i docker0 -w capture_docker_0.pcap

Open a third terminal tab ⌘ + T

docker1

Execute another command to listen for all packets in the docker1 bridge interface.

Terminal-3 Ubuntu
sudo tcpdump -i docker1 -w capture_docker_1.pcap

Create 2 Containers in the Default Bridge, Also Connect Them to the Custom Bridge

Create 2 Containers in the Default Bridge

Terminal-2 Ubuntu

Create containers in the default bridge
docker run -itd \
--name=alpine1 \
--ip=172.17.0.2 \
alpine

docker run -itd \
--name=alpine2 \
--ip=172.17.0.4 \
alpine

Connect Containers to Another Network

Connect new interfaces in the containers to another network.

Connect alpine1 to custom_bridge with IP 172.18.0.3
docker network connect --ip=172.18.0.3 custom_bridge alpine1

Connect alpine2 to custom_bridge with IP 172.18.0.5
docker network connect --ip=172.18.0.5 custom_bridge alpine2

Send Pings to the Internet From the First Interface

Ping google.com four times in each container from bridge.

Ping from alpine1 with IP 172.17.0.2
docker exec -it alpine1 ping -I 172.17.0.2 -c 2 google.com

Ping from alpine2 with IP 172.17.0.4
docker exec -it alpine2 ping -I 172.17.0.4 -c 2 google.com

Send Pings to the Internet From the Second Interface

Ping google.com four times in each container from custom_bridge.

Ping from alpine1 with IP 172.18.0.3
docker exec -it alpine1 ping -I 172.18.0.3 -c 2 google.com

Ping from alpine2 with IP 172.18.0.5
docker exec -it alpine2 ping -I 172.18.0.5 -c 2 google.com

View MAC Addresses of Each Bridge Interface

View MAC addresses of Docker0 and Docker1 bridge interfaces.

Note

The Organizationally Unique Identifier (OUI) of all Docker network adapters is 02:42. So expect all docker container MAC addresses to begin with that.

Terminal-1 Ubuntu
ip --brief link | grep -E 'docker0|docker1' | awk '{print $1, $3}'

Note

Jump to View Packet Captures

Output:

docker0 02:42:28:a8:cb:f5
docker1 02:42:7c:61:6d:f0

View MAC Addresses of Each Container Interface

View MAC addresses of containers in bridge and custom_bridge networks.

Bridge network

Terminal-1 Ubuntu
docker network inspect bridge --format '{{range .Containers}}{{.Name}}: {{.MacAddress}}{{"\n"}}{{end}}'

Note

Jump to View Packet Captures

Output-1:

alpine1: 02:42:ac:11:00:02
alpine2: 02:42:ac:11:00:03

Custom bridge network

Terminal-2 Ubuntu
docker network inspect custom_bridge --format '{{range .Containers}}{{.Name}}: {{.MacAddress}}{{"\n"}}{{end}}'

Output-2:

alpine1: 02:42:ac:12:00:03
alpine2: 02:42:ac:12:00:05

End Packet Captures

Packet Capture 1

Stop ARP packet capture in Terminal-2 Ubuntu.

Terminal-2 Ubuntu
"control + c"

Packet Capture 2

Stop ARP packet capture in Terminal-3 Ubuntu.

Terminal-3 Ubuntu
"control + c"

Move the Files to the Local Directory

Move captured packet files to the local directory.

Terminal-1, 2, or 3 Ubuntu
mv capture_docker_0.pcap /mnt
mv capture_docker_1.pcap /mnt

View Packet Captures

Note

Go to, View MAC Addresses of Each Bridge Interface and View MAC Addresses of Each Container Interface to confirm the MAC addresses of each device when analyzing the packet capture.

Docker0 Bridge Interface

Now, I located and opened the packet capture.

[image: Packet Capture - Docker0 Bridge Interface]
We noticed something interesting: The default MAC addresses of alpine1: 02:42:ac:11:00:02 and alpine2: 02:42:ac:11:00:03 were requesting the MAC address for the bridge’s interface, docker0: 02:42:28:a8:cb:f5, to send an Ethernet frame to google.com. The bridge’s interface was used as the next hop.

We also see that the DNS name server lookup for google.com could be possible only after an ARP reply from docker0: 02:42:28:a8:cb:f5.

Docker1 Bridge Interface

[image: Packet Capture - Docker1 Bridge Interface]
The same also applies here. the custom MAC addresses of alpine1: 02:42:ac:12:00:03 and alpine2: 02:42:ac:12:00:05 were requesting the mac-address for the bridge’s interface docker1: 02:42:7c:61:6d:f0 so it can send an ethernet frame destined to google.com. The bridge’s interface is used as the next hop.

Clean-Up

Stop and Remove the Container

Stop containers alpine1 and alpine2
docker stop alpine1 alpine2

Remove containers alpine1 and alpine2
docker rm alpine1 alpine2

Delete Custom Bridge

Remove custom_bridge network
docker network rm custom_bridge

Verify Network List

root@ubuntu:/home/ubuntu# docker network ls
NETWORK ID NAME DRIVER SCOPE
2eabde4e866c bridge bridge local
e9f54b21c605 host host local
e9708605179a none null local

Stop Ubuntu Server

Stop Ubuntu server
multipass stop ubuntu

Conclusion

Now, I understand that everyone can’t stop talking about Kubernetes, but a lot of senior engineers have advised that it’d be best to learn docker before picking kubernetes up. Though I’ve played with Kubernetes severally, I struggled. However, each new day I keep spending with docker makes understanding kubernetes a piece of cake. This guide serves as a strong foundation for analyzing ARP packets in containers.

Resources

I enjoyed these two articles from Hank Preston, a principal engineer at Cisco. The last one is from me.

	Exploring Default Docker Networking Part 1 [https://blogs.cisco.com/learning/exploring-default-docker-networking-part-1#:~:text=With%20those%20basics%20covered%2C%20let%27s,that%20uses%20the%20bridge%20driver.]

	Exploring Default Docker Networking Part 2 [https://blogs.cisco.com/learning/exploring-default-docker-networking-part-2]

	A Routers Intimacy With MAC Addresses [https://charlesuneze.substack.com/p/a-routers-intimacy-with-mac-addresses] (I wrote this a few years ago. It discusses ARP and ICMP in a Cisco environment.)

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to Docker ARP Analysis Documentation!

 		
 Requirements

 		
 Install Homebrew and Multipass

 		
 Download Multipass

 		
 Download an Ubuntu Server from Multipass

 		
 Go to the Shell of the Ubuntu Server

 		
 Install Docker

 		
 Mount a Local Folder to an Ubuntu Directory

 		
 Install Wireshark

 		
 Architecture Deployment Guide

 		
 Enter into Ubuntu Shell

 		
 Create a Custom Bridge

 		
 Verify New Bridge

 		
 Pull Alpine Image

 		
 Open New Terminal Tabs and Capture Packets in Each Bridge

 		
 docker0

 		
 docker1

 		
 Create 2 Containers in the Default Bridge, Also Connect Them to the Custom Bridge

 		
 Create 2 Containers in the Default Bridge

 		
 Connect Containers to Another Network

 		
 Send Pings to the Internet From the First Interface

 		
 Send Pings to the Internet From the Second Interface

 		
 View MAC Addresses of Each Bridge Interface

 		
 View MAC Addresses of Each Container Interface

 		
 Bridge network

 		
 Custom bridge network

 		
 End Packet Captures

 		
 Packet Capture 1

 		
 Packet Capture 2

 		
 Move the Files to the Local Directory

 		
 View Packet Captures

 		
 Docker0 Bridge Interface

 		
 Docker1 Bridge Interface

 		
 Clean-Up

 		
 Stop and Remove the Container

 		
 Delete Custom Bridge

 		
 Verify Network List

 		
 Stop Ubuntu Server

 		
 Conclusion

 		
 Resources

_images/docker0.png
VCoNOULEWNR

Pl el
WN R

0.000000
0.000037
0.000044
0.001381
0.073192
0.074337
0.074821
0.319984
1.149902
1.343037
1.441313
1.441348
1.441354

| Source
02:42:ac:11:00:02

02:42:28:a8:cb: f5
172.17.0.2
172.17.0.2
192.168.64.1
192.168.64.1
172.17.0.2
142.250.184.14
172.17.0.2
142.250.184.14
02:42:ac:11:00:03
02:42:28:a8:cb: f5
172.17.0.3

| Destination
Broadcast

02:42:ac:11:00:02
192.168.64.1
192.168.64.1
172.17.0.2
172.17.0.2
142.250.184.14
172.17.0.2
142.250.184.14
172.17.0.2
Broadcast
02:42:ac:11:00:03
192.168.64.1

| Protocol |Length

ARP
ARP
DNS
DNS
DNS
DNS
ICMP
ICMP
ICMP
ICMP
ARP
ARP
DNS

42
42
70
70
86
98
98
98
98
98
42
42
70

| Info
Who has 172.17.0.17 Tell 172.17.0.2

172.17.0.1 is at 02:42:28:a8:cb: f5

Standard query 0xab82 A google.com

Standard query @xacb4 AAAA google.com

Standard query response 0xab82 A google.com A 142.250.184.14
Standard query response @xacb4 AAAA google.com AAAA 2a00:1450:4003:808::200e
Echo (ping) request id=0x002a, seq=0/0, ttl=64 (reply in 8)
Echo (ping) reply id=0x002a, seq=0/0, tt1=52 (request in 7)
Echo (ping) request id=0x002a, seq=1/256, ttl=64 (reply in 10)
Echo (ping) reply id=0x002a, seq=1/256, ttl=52 (request in 9)
Who has 172.17.0.17 Tell 172.17.0.3

172.17.0.1 is at 02:42:28:a8:cb: f5

Standard query 0x9d49 A google.com

_static/plus.png

_images/docker1.png
CoNOOUL AW

10

539.454556
539.454595
539.454618
540.582198
540.848621
540.848844
540.848879
541.862551

02:42:7c:61:6d:
02:42:ac:12:00:

142.250.184.14
142.250.184.14

02:42:7c:61:6d:
02:42:ac:12:00:

142.250.184.14
142.250.184.14

fo
03

fo
05

Broadcast
02:42:7c:61:6d:f0
172.18.0.3
172.18.0.3
Broadcast
02:42:7c:61:6d:f0
172.18.0.5
172.18.0.5

ARP
ARP
ICMP
ICMP
ARP
ARP
ICMP
ICMP

42
42
98
98
42
42
98
98

Who has 172.18.0.37 Tell 172.18.0.1

172.18.0.3 is at 02:42:ac:12:00:03

Echo (ping) reply id=0x002f, seq=0/0, ttl=52
Echo (ping) reply id=0x002f, seq=1/256, ttl=52
Who has 172.18.0.57 Tell 172.18.0.1

172.18.0.5 is at 02:42:ac:12:00:05

Echo (ping) reply id=0x0011, seq=0/0, ttl=52
Echo (ping) reply id=0x0011, seq=1/256, ttl=52

_static/file.png

_images/architecture.png
1 =1
ﬁ 1
N | 1#2.17.0.0/16
biisles | [@Public subnet 1
eth0/1 |
1
Bridge Wocker0)
L2 VA ... dﬁe
Suteh | ven0/R vethO/O
1
I eth0/y,
mo/o |
"""" Alpme1

oA ¢th0/0
veth0/t veth0/1

[B]Public Subnet 2
172.1%.0.0/16

192,16 %.64.0/24

|_______________—9_______________

|
1
1
1
I
1
| Custom_Bridge Glocker)
1
1
1
1
1
L

_static/minus.png

_static/docker0.png
VCoNOULEWNR

Pl el
WN R

0.000000
0.000037
0.000044
0.001381
0.073192
0.074337
0.074821
0.319984
1.149902
1.343037
1.441313
1.441348
1.441354

| Source
02:42:ac:11:00:02

02:42:28:a8:cb: f5
172.17.0.2
172.17.0.2
192.168.64.1
192.168.64.1
172.17.0.2
142.250.184.14
172.17.0.2
142.250.184.14
02:42:ac:11:00:03
02:42:28:a8:cb: f5
172.17.0.3

| Destination
Broadcast

02:42:ac:11:00:02
192.168.64.1
192.168.64.1
172.17.0.2
172.17.0.2
142.250.184.14
172.17.0.2
142.250.184.14
172.17.0.2
Broadcast
02:42:ac:11:00:03
192.168.64.1

| Protocol |Length

ARP
ARP
DNS
DNS
DNS
DNS
ICMP
ICMP
ICMP
ICMP
ARP
ARP
DNS

42
42
70
70
86
98
98
98
98
98
42
42
70

| Info
Who has 172.17.0.17 Tell 172.17.0.2

172.17.0.1 is at 02:42:28:a8:cb: f5

Standard query 0xab82 A google.com

Standard query @xacb4 AAAA google.com

Standard query response 0xab82 A google.com A 142.250.184.14
Standard query response @xacb4 AAAA google.com AAAA 2a00:1450:4003:808::200e
Echo (ping) request id=0x002a, seq=0/0, ttl=64 (reply in 8)
Echo (ping) reply id=0x002a, seq=0/0, tt1=52 (request in 7)
Echo (ping) request id=0x002a, seq=1/256, ttl=64 (reply in 10)
Echo (ping) reply id=0x002a, seq=1/256, ttl=52 (request in 9)
Who has 172.17.0.17 Tell 172.17.0.3

172.17.0.1 is at 02:42:28:a8:cb: f5

Standard query 0x9d49 A google.com

_static/docker1.png
CoNOOUL AW

10

539.454556
539.454595
539.454618
540.582198
540.848621
540.848844
540.848879
541.862551

02:42:7c:61:6d:
02:42:ac:12:00:

142.250.184.14
142.250.184.14

02:42:7c:61:6d:
02:42:ac:12:00:

142.250.184.14
142.250.184.14

fo
03

fo
05

Broadcast
02:42:7c:61:6d:f0
172.18.0.3
172.18.0.3
Broadcast
02:42:7c:61:6d:f0
172.18.0.5
172.18.0.5

ARP
ARP
ICMP
ICMP
ARP
ARP
ICMP
ICMP

42
42
98
98
42
42
98
98

Who has 172.18.0.37 Tell 172.18.0.1

172.18.0.3 is at 02:42:ac:12:00:03

Echo (ping) reply id=0x002f, seq=0/0, ttl=52
Echo (ping) reply id=0x002f, seq=1/256, ttl=52
Who has 172.18.0.57 Tell 172.18.0.1

172.18.0.5 is at 02:42:ac:12:00:05

Echo (ping) reply id=0x0011, seq=0/0, ttl=52
Echo (ping) reply id=0x0011, seq=1/256, ttl=52

_static/architecture.png
1 =1
ﬁ 1
N | 1#2.17.0.0/16
biisles | [@Public subnet 1
eth0/1 |
1
Bridge Wocker0)
L2 VA ... dﬁe
Suteh | ven0/R vethO/O
1
I eth0/y,
mo/o |
"""" Alpme1

oA ¢th0/0
veth0/t veth0/1

[B]Public Subnet 2
172.1%.0.0/16

192,16 %.64.0/24

|_______________—9_______________

|
1
1
1
I
1
| Custom_Bridge Glocker)
1
1
1
1
1
L

